minimal ultrafilter - ορισμός. Τι είναι το minimal ultrafilter
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

Τι (ποιος) είναι minimal ultrafilter - ορισμός

IN SET THEORY, GIVEN A COLLECTION OF DENSE OPEN SUBSETS OF A POSET, A FILTER THAT MEETS ALL SETS IN THAT COLLECTION
Generic ultrafilter

Minimal pair         
TWO WORDS THAT DIFFER IN ONLY ONE ELEMENT OF THEIR PRONUNCIATION
Minimal pairs; Minimal Pair; Contrasting pair
In phonology, minimal pairs are pairs of words or phrases in a particular language, spoken or signed, that differ in only one phonological element, such as a phoneme, toneme or chroneme, and have distinct meanings. They are used to demonstrate that two phones represent two separate phonemes in the language.
minimal pair         
TWO WORDS THAT DIFFER IN ONLY ONE ELEMENT OF THEIR PRONUNCIATION
Minimal pairs; Minimal Pair; Contrasting pair
n. (ling.) to produce; represent a minimal pair
Minimal model (physics)         
TWO-DIMENSIONAL CONFORMAL FIELD THEORY WITH A FINITE NUMBER OF PRIMARIES
Virasoro minimal model; Virasoro minimal models; Minimal models
In theoretical physics, a minimal model or Virasoro minimal model is a two-dimensional conformal field theory whose spectrum is built from finitely many irreducible representations of the Virasoro algebra.

Βικιπαίδεια

Generic filter

In the mathematical field of set theory, a generic filter is a kind of object used in the theory of forcing, a technique used for many purposes, but especially to establish the independence of certain propositions from certain formal theories, such as ZFC. For example, Paul Cohen used forcing to establish that ZFC, if consistent, cannot prove the continuum hypothesis, which states that there are exactly aleph-one real numbers. In the contemporary re-interpretation of Cohen's proof, it proceeds by constructing a generic filter that codes more than 1 {\displaystyle \aleph _{1}} reals, without changing the value of 1 {\displaystyle \aleph _{1}} .

Formally, let P be a partially ordered set, and let F be a filter on P; that is, F is a subset of P such that:

  1. F is nonempty
  2. If pq ∈ P and p ≤ q and p is an element of F, then q is an element of F (F is closed upward)
  3. If p and q are elements of F, then there is an element r of F such that r ≤ p and r ≤ q (F is downward directed)

Now if D is a collection of dense open subsets of P, in the topology whose basic open sets are all sets of the form {q | q ≤ p} for particular p in P, then F is said to be D-generic if F meets all sets in D; that is,

F E , {\displaystyle F\cap E\neq \varnothing ,\,} for all E ∈ D.

Similarly, if M is a transitive model of ZFC (or some sufficient fragment thereof), with P an element of M, then F is said to be M-generic, or sometimes generic over M, if F meets all dense open subsets of P that are elements of M.